Jeffery Russell 5 years ago
parent
commit
f713cd84be
67 changed files with 239 additions and 5 deletions
  1. +56
    -0
      hypotheses_modeling/ryan_regressions.txt
  2. +17
    -5
      hypotheses_modeling/team_regressions.py
  3. +102
    -0
      run_all_regressions.py
  4. BIN
      wellness_poly_regressions/normDesire_vs_MenstruationNumber_2_degree.png
  5. BIN
      wellness_poly_regressions/normDesire_vs_MenstruationNumber_3_degree.png
  6. BIN
      wellness_poly_regressions/normDesire_vs_MenstruationNumber_4_degree.png
  7. BIN
      wellness_poly_regressions/normDesire_vs_normIrritability_2_degree.png
  8. BIN
      wellness_poly_regressions/normDesire_vs_normIrritability_3_degree.png
  9. BIN
      wellness_poly_regressions/normDesire_vs_normIrritability_4_degree.png
  10. BIN
      wellness_poly_regressions/normDesire_vs_normSleepHours_2_degree.png
  11. BIN
      wellness_poly_regressions/normDesire_vs_normSleepHours_3_degree.png
  12. BIN
      wellness_poly_regressions/normDesire_vs_normSleepHours_4_degree.png
  13. BIN
      wellness_poly_regressions/normDesire_vs_normSleepQuality_2_degree.png
  14. BIN
      wellness_poly_regressions/normDesire_vs_normSleepQuality_3_degree.png
  15. BIN
      wellness_poly_regressions/normDesire_vs_normSleepQuality_4_degree.png
  16. BIN
      wellness_poly_regressions/normFatigue_vs_MenstruationNumber_2_degree.png
  17. BIN
      wellness_poly_regressions/normFatigue_vs_MenstruationNumber_3_degree.png
  18. BIN
      wellness_poly_regressions/normFatigue_vs_MenstruationNumber_4_degree.png
  19. BIN
      wellness_poly_regressions/normFatigue_vs_normDesire_2_degree.png
  20. BIN
      wellness_poly_regressions/normFatigue_vs_normDesire_3_degree.png
  21. BIN
      wellness_poly_regressions/normFatigue_vs_normDesire_4_degree.png
  22. BIN
      wellness_poly_regressions/normFatigue_vs_normIrritability_2_degree.png
  23. BIN
      wellness_poly_regressions/normFatigue_vs_normIrritability_3_degree.png
  24. BIN
      wellness_poly_regressions/normFatigue_vs_normIrritability_4_degree.png
  25. BIN
      wellness_poly_regressions/normFatigue_vs_normSleepHours_2_degree.png
  26. BIN
      wellness_poly_regressions/normFatigue_vs_normSleepHours_3_degree.png
  27. BIN
      wellness_poly_regressions/normFatigue_vs_normSleepHours_4_degree.png
  28. BIN
      wellness_poly_regressions/normFatigue_vs_normSleepQuality_2_degree.png
  29. BIN
      wellness_poly_regressions/normFatigue_vs_normSleepQuality_3_degree.png
  30. BIN
      wellness_poly_regressions/normFatigue_vs_normSleepQuality_4_degree.png
  31. BIN
      wellness_poly_regressions/normIrritability_vs_MenstruationNumber_2_degree.png
  32. BIN
      wellness_poly_regressions/normIrritability_vs_MenstruationNumber_3_degree.png
  33. BIN
      wellness_poly_regressions/normIrritability_vs_MenstruationNumber_4_degree.png
  34. BIN
      wellness_poly_regressions/normIrritability_vs_normSleepHours_2_degree.png
  35. BIN
      wellness_poly_regressions/normIrritability_vs_normSleepHours_3_degree.png
  36. BIN
      wellness_poly_regressions/normIrritability_vs_normSleepHours_4_degree.png
  37. BIN
      wellness_poly_regressions/normIrritability_vs_normSleepQuality_2_degree.png
  38. BIN
      wellness_poly_regressions/normIrritability_vs_normSleepQuality_3_degree.png
  39. BIN
      wellness_poly_regressions/normIrritability_vs_normSleepQuality_4_degree.png
  40. BIN
      wellness_poly_regressions/normSleepHours_vs_MenstruationNumber_2_degree.png
  41. BIN
      wellness_poly_regressions/normSleepHours_vs_MenstruationNumber_3_degree.png
  42. BIN
      wellness_poly_regressions/normSleepHours_vs_MenstruationNumber_4_degree.png
  43. BIN
      wellness_poly_regressions/normSleepHours_vs_normSleepQuality_2_degree.png
  44. BIN
      wellness_poly_regressions/normSleepHours_vs_normSleepQuality_3_degree.png
  45. BIN
      wellness_poly_regressions/normSleepHours_vs_normSleepQuality_4_degree.png
  46. BIN
      wellness_poly_regressions/normSleepQuality_vs_MenstruationNumber_2_degree.png
  47. BIN
      wellness_poly_regressions/normSleepQuality_vs_MenstruationNumber_3_degree.png
  48. BIN
      wellness_poly_regressions/normSleepQuality_vs_MenstruationNumber_4_degree.png
  49. BIN
      wellness_poly_regressions/normSoreness_vs_MenstruationNumber_2_degree.png
  50. BIN
      wellness_poly_regressions/normSoreness_vs_MenstruationNumber_3_degree.png
  51. BIN
      wellness_poly_regressions/normSoreness_vs_MenstruationNumber_4_degree.png
  52. BIN
      wellness_poly_regressions/normSoreness_vs_normDesire_2_degree.png
  53. BIN
      wellness_poly_regressions/normSoreness_vs_normDesire_3_degree.png
  54. BIN
      wellness_poly_regressions/normSoreness_vs_normDesire_4_degree.png
  55. BIN
      wellness_poly_regressions/normSoreness_vs_normFatigue_2_degree.png
  56. BIN
      wellness_poly_regressions/normSoreness_vs_normFatigue_3_degree.png
  57. BIN
      wellness_poly_regressions/normSoreness_vs_normFatigue_4_degree.png
  58. BIN
      wellness_poly_regressions/normSoreness_vs_normIrritability_2_degree.png
  59. BIN
      wellness_poly_regressions/normSoreness_vs_normIrritability_3_degree.png
  60. BIN
      wellness_poly_regressions/normSoreness_vs_normIrritability_4_degree.png
  61. BIN
      wellness_poly_regressions/normSoreness_vs_normSleepHours_2_degree.png
  62. BIN
      wellness_poly_regressions/normSoreness_vs_normSleepHours_3_degree.png
  63. BIN
      wellness_poly_regressions/normSoreness_vs_normSleepHours_4_degree.png
  64. BIN
      wellness_poly_regressions/normSoreness_vs_normSleepQuality_2_degree.png
  65. BIN
      wellness_poly_regressions/normSoreness_vs_normSleepQuality_3_degree.png
  66. BIN
      wellness_poly_regressions/normSoreness_vs_normSleepQuality_4_degree.png
  67. +64
    -0
      wellness_poly_regressions/wellness_poly_regression_desc.csv

+ 56
- 0
hypotheses_modeling/ryan_regressions.txt View File

@ -0,0 +1,56 @@
Player 9 for acuteChronicRatio
(1.5543991777375237, array([-0.13902363, -0.0050734 ]), 0.43833525766886916, 0.0008867324974165428)
(0.48957502323211444, 0.5699208996736808)
Player 11 for acuteChronicRatio
(1.3258336437888891, array([ 0.00685405, -0.00203877]), 0.11479264860906191, 0.00096573215060248)
(0.4626369870793939, 0.44423100028132423)
Player 9 for sleepQuality
(5.334340148618029, array([ 1.02125114, -0.00432071]), 0.6539555377710119, 0.0012466268315319546)
(0.597372726628557, 0.7193845945200593)
Player 12 for sleepQuality
(3.584632145668627, array([0.41485048, 0.00088306]), 0.34499328173976607, 0.0006803191826778461)
(0.4600451787749952, 0.4227561697627662)
Player 3 for soreness
(3.2022109874813864, array([ 4.19185564e-01, -1.39780603e-04]), 0.4252210971285296, 0.0006688273367686844)
(0.4674558844267985, 0.468022382169041)
Player 7 for soreness
(3.077085467389001, array([4.26722267e-01, 5.78941104e-05]), 0.39740866670470376, 0.0007515523424419748)
(0.49988907759269197, 0.4324080355741665)
Player 9 for soreness
(5.246967544538162, array([ 0.71359643, -0.00715268]), 0.5944763974272957, 0.0019117577400940124)
(0.7765705044770445, 0.637614880294574)
Player 3 for sorenessNorm
(0.12141700921277873, array([ 0.58776641, -0.00068588]), 0.36954097046558354, 0.0017457549720592538)
(0.7372571250720799, 0.443920566690573)
Player 9 for sleepQualityNorm
(0.08976795719049747, array([ 7.62990183e-01, -4.56901189e-04]), 0.5858342550214043, 0.0005114756024138036)
(0.40337948626285336, 0.6267479812123391)
Player 12 for sleepQualityNorm
(0.0030010445831953553, array([ 5.97640029e-01, -1.59341568e-05]), 0.3568843263232311, 0.00117522635306064)
(0.6154637522814207, 0.4127840710858218)
Player 3 for BestOutOfMyselfAbsolutely
(0.5591113560131244, array([-0.06273135, 0.00144052]), 0.19693367374327753, 0.00034431962962114574)
(0.29946330051959735, 0.4074811906349808)
Player 9 for BestOutOfMyselfAbsolutely
(0.6212790914046262, array([ 0.23297634, -0.00209794]), 0.49210290965481174, 0.0002682490835151878)
(0.2897694328560262, 0.5496315964616945)
Player 3 for BestOutOfMyselfUnknown
(0.45258982162191874, array([ 0.0601493 , -0.00149072]), 0.20252316026232742, 0.0003459027048924739)
(0.2980996120964688, 0.41962026820540466)
Player 9 for BestOutOfMyselfUnknown
(0.34069195794958324, array([-0.22074479, 0.00217018]), 0.4646199842752917, 0.0003011772648087732)
(0.3048702214016301, 0.5319467359793901)

+ 17
- 5
hypotheses_modeling/team_regressions.py View File

@ -60,12 +60,24 @@ def poly_regression(x, y, degree):
def main(): def main():
file = open("ryan_regressions.txt", 'w')
player = pd.read_csv("../data_preparation/cleaned/personal.csv", index_col=0) player = pd.read_csv("../data_preparation/cleaned/personal.csv", index_col=0)
player = player[player['playerID'] == 1]
x = player[['fatigueNorm', 'day']]
y = player['sorenessNorm']
print(standard_lr(x, y))
print(poly_regression(x, y, 5))
for name, value in player.iteritems():
if name == "day":
continue
for j in range(1, 17):
ply = player[player['playerID'] == j]
x = ply[['fatigueNorm', 'day']]
y = ply[name]
lr = standard_lr(x, y)
poly = poly_regression(x, y, 3)
if .9 > lr[2] > .4 or .9 > poly[1] > .4:
file.write("Player {} for {}\n".format(j, name))
file.write("{}\n".format(lr))
file.write("{}\n\n".format(poly))
if __name__ == "__main__": if __name__ == "__main__":

+ 102
- 0
run_all_regressions.py View File

@ -0,0 +1,102 @@
from sklearn import linear_model
import pandas as pd
from sklearn.metrics import mean_squared_error, r2_score
from matplotlib import pyplot as plt
import numpy as np
from sklearn.preprocessing import PolynomialFeatures
def k_days_into_future_regression(X, y, k, n0):
"""
linear regression that returns the fitted weights as well as metrics
:param X: x timeseries dataframe (very clean, no unamed columns), multidimensional rows
:param y: y timeseries dataframe (very clean, no unamed columns), scalar rows
:param k: days predicting in advance
:param n0: ignoring the first n0 days
:return: intercept, slopes, correlation, mean squared error
"""
col = "TimeSinceAugFirst"
inp = []
out = []
for day in y[col][n0 - 1:]:
prev = day - k
xprev = X[X[col] == prev].drop(columns=[col]).to_numpy()
if xprev.shape[0] != 1:
continue
else:
xprev = xprev[0, :]
yt = y[y[col] == day].drop(columns=[col]).to_numpy()[0, :]
inp.append(xprev)
out.append(yt)
regr = linear_model.LinearRegression()
regr.fit(inp, out)
predictions = regr.predict(inp)
mse = mean_squared_error(out, predictions)/(len(out) - 2)
r2 = r2_score(out, predictions)
return regr.intercept_, regr.coef_, r2, mse
def standard_lr(x, y):
x = x.reshape(-1, 1)
y = y.reshape(-1, 1)
regr = linear_model.LinearRegression()
regr.fit(x, y)
predictions = regr.predict(x)
mse = mean_squared_error(y, predictions) / (len(y) - 2)
r2 = r2_score(y, predictions)
return regr.intercept_, regr.coef_, r2, mse
def poly_regression(x, y, degree):
# Polynomial regression with nth degree, gives back rmse and r2
polynomial_features = PolynomialFeatures(degree=degree)
x_poly = polynomial_features.fist_transform(x)
model = linear_model.LinearRegression()
model.fit(x_poly, y)
y_poly_pred = model.predict(x_poly)
rmse = np.sqrt(mean_squared_error(y, y_poly_pred))
r2 = r2_score(y, y_poly_pred)
return rmse, r2
def run_all_linears():
# Reads in the neccessary csv file
df = pd.read_csv('data_preparation/cleaned/time_series_normalized_wellness_menstruation.csv')
regr = linear_model.LinearRegression()
for i in range(4, 11):
for j in range(1, 11 - i):
mat = df[[df.columns[i], df.columns[i + j]]].values
regr.intercept_, regr.coef_, r2, mse = standard_lr(mat[:, 0], mat[:, 1])
plt.figure(figsize=(6, 6))
plt.xlabel(df.columns[i])
plt.ylabel(df.columns[i + j])
plt.title('r2: ' + str(r2))
plt.scatter(mat[:, 0], mat[:, 1])
plt.savefig('wellness_linear_regressions/' + df.columns[i] + '_vs_' + df.columns[i + j] + '.png')
plt.close()
def run_all_polynomials():
# Reads in the neccessary csv file
df = pd.read_csv('data_preparation/cleaned/time_series_normalized_wellness_menstruation.csv')
regr = linear_model.LinearRegression()
for i in range(4, 11):
for j in range(1, 11 - i):
mat = df[[df.columns[i], df.columns[i + j]]].values
for d in range(2, 5):
rmse, r2 = poly_regression(mat[:, 0], mat[:, 1], d)
plt.figure(figsize=(6, 6))
plt.xlabel(df.columns[i])
plt.ylabel(df.columns[i + j])
plt.title('r2: ' + str(r2) + 'degree: ' + str(d))
plt.scatter(mat[:, 0], mat[:, 1])
plt.savefig('wellness_poly_regressions/' + df.columns[i] + '_vs_' + df.columns[i + j] + '_' + str(d) + '_degree.png')
print(df.columns[i] + '_vs_' + df.columns[i + j] + '_degree_' + str(d) + '_r2=' + str(r2) + '_rmse=' + str(rmse))
plt.close()
run_all_linears()
run_all_polynomials()

BIN
wellness_poly_regressions/normDesire_vs_MenstruationNumber_2_degree.png View File

Before After
Width: 600  |  Height: 600  |  Size: 23 KiB

BIN
wellness_poly_regressions/normDesire_vs_MenstruationNumber_3_degree.png View File

Before After
Width: 600  |  Height: 600  |  Size: 22 KiB

BIN
wellness_poly_regressions/normDesire_vs_MenstruationNumber_4_degree.png View File

Before After
Width: 600  |  Height: 600  |  Size: 22 KiB

BIN
wellness_poly_regressions/normDesire_vs_normIrritability_2_degree.png View File

Before After
Width: 600  |  Height: 600  |  Size: 31 KiB

BIN
wellness_poly_regressions/normDesire_vs_normIrritability_3_degree.png View File

Before After
Width: 600  |  Height: 600  |  Size: 31 KiB

BIN
wellness_poly_regressions/normDesire_vs_normIrritability_4_degree.png View File

Before After
Width: 600  |  Height: 600  |  Size: 31 KiB

BIN
wellness_poly_regressions/normDesire_vs_normSleepHours_2_degree.png View File

Before After
Width: 600  |  Height: 600  |  Size: 33 KiB

BIN
wellness_poly_regressions/normDesire_vs_normSleepHours_3_degree.png View File

Before After
Width: 600  |  Height: 600  |  Size: 32 KiB

BIN
wellness_poly_regressions/normDesire_vs_normSleepHours_4_degree.png View File

Before After
Width: 600  |  Height: 600  |  Size: 33 KiB

BIN
wellness_poly_regressions/normDesire_vs_normSleepQuality_2_degree.png View File

Before After
Width: 600  |  Height: 600  |  Size: 35 KiB

BIN
wellness_poly_regressions/normDesire_vs_normSleepQuality_3_degree.png View File

Before After
Width: 600  |  Height: 600  |  Size: 35 KiB

BIN
wellness_poly_regressions/normDesire_vs_normSleepQuality_4_degree.png View File

Before After
Width: 600  |  Height: 600  |  Size: 36 KiB

BIN
wellness_poly_regressions/normFatigue_vs_MenstruationNumber_2_degree.png View File

Before After
Width: 600  |  Height: 600  |  Size: 22 KiB

BIN
wellness_poly_regressions/normFatigue_vs_MenstruationNumber_3_degree.png View File

Before After
Width: 600  |  Height: 600  |  Size: 23 KiB

BIN
wellness_poly_regressions/normFatigue_vs_MenstruationNumber_4_degree.png View File

Before After
Width: 600  |  Height: 600  |  Size: 23 KiB

BIN
wellness_poly_regressions/normFatigue_vs_normDesire_2_degree.png View File

Before After
Width: 600  |  Height: 600  |  Size: 38 KiB

BIN
wellness_poly_regressions/normFatigue_vs_normDesire_3_degree.png View File

Before After
Width: 600  |  Height: 600  |  Size: 38 KiB

BIN
wellness_poly_regressions/normFatigue_vs_normDesire_4_degree.png View File

Before After
Width: 600  |  Height: 600  |  Size: 38 KiB

BIN
wellness_poly_regressions/normFatigue_vs_normIrritability_2_degree.png View File

Before After
Width: 600  |  Height: 600  |  Size: 34 KiB

BIN
wellness_poly_regressions/normFatigue_vs_normIrritability_3_degree.png View File

Before After
Width: 600  |  Height: 600  |  Size: 33 KiB

BIN
wellness_poly_regressions/normFatigue_vs_normIrritability_4_degree.png View File

Before After
Width: 600  |  Height: 600  |  Size: 34 KiB

BIN
wellness_poly_regressions/normFatigue_vs_normSleepHours_2_degree.png View File

Before After
Width: 600  |  Height: 600  |  Size: 38 KiB

BIN
wellness_poly_regressions/normFatigue_vs_normSleepHours_3_degree.png View File

Before After
Width: 600  |  Height: 600  |  Size: 39 KiB

BIN
wellness_poly_regressions/normFatigue_vs_normSleepHours_4_degree.png View File

Before After
Width: 600  |  Height: 600  |  Size: 39 KiB

BIN
wellness_poly_regressions/normFatigue_vs_normSleepQuality_2_degree.png View File

Before After
Width: 600  |  Height: 600  |  Size: 38 KiB

BIN
wellness_poly_regressions/normFatigue_vs_normSleepQuality_3_degree.png View File

Before After
Width: 600  |  Height: 600  |  Size: 38 KiB

BIN
wellness_poly_regressions/normFatigue_vs_normSleepQuality_4_degree.png View File

Before After
Width: 600  |  Height: 600  |  Size: 38 KiB

BIN
wellness_poly_regressions/normIrritability_vs_MenstruationNumber_2_degree.png View File

Before After
Width: 600  |  Height: 600  |  Size: 21 KiB

BIN
wellness_poly_regressions/normIrritability_vs_MenstruationNumber_3_degree.png View File

Before After
Width: 600  |  Height: 600  |  Size: 21 KiB

BIN
wellness_poly_regressions/normIrritability_vs_MenstruationNumber_4_degree.png View File

Before After
Width: 600  |  Height: 600  |  Size: 21 KiB

BIN
wellness_poly_regressions/normIrritability_vs_normSleepHours_2_degree.png View File

Before After
Width: 600  |  Height: 600  |  Size: 30 KiB

BIN
wellness_poly_regressions/normIrritability_vs_normSleepHours_3_degree.png View File

Before After
Width: 600  |  Height: 600  |  Size: 30 KiB

BIN
wellness_poly_regressions/normIrritability_vs_normSleepHours_4_degree.png View File

Before After
Width: 600  |  Height: 600  |  Size: 30 KiB

BIN
wellness_poly_regressions/normIrritability_vs_normSleepQuality_2_degree.png View File

Before After
Width: 600  |  Height: 600  |  Size: 32 KiB

BIN
wellness_poly_regressions/normIrritability_vs_normSleepQuality_3_degree.png View File

Before After
Width: 600  |  Height: 600  |  Size: 34 KiB

BIN
wellness_poly_regressions/normIrritability_vs_normSleepQuality_4_degree.png View File

Before After
Width: 600  |  Height: 600  |  Size: 33 KiB

BIN
wellness_poly_regressions/normSleepHours_vs_MenstruationNumber_2_degree.png View File

Before After
Width: 600  |  Height: 600  |  Size: 21 KiB

BIN
wellness_poly_regressions/normSleepHours_vs_MenstruationNumber_3_degree.png View File

Before After
Width: 600  |  Height: 600  |  Size: 22 KiB

BIN
wellness_poly_regressions/normSleepHours_vs_MenstruationNumber_4_degree.png View File

Before After
Width: 600  |  Height: 600  |  Size: 22 KiB

BIN
wellness_poly_regressions/normSleepHours_vs_normSleepQuality_2_degree.png View File

Before After
Width: 600  |  Height: 600  |  Size: 32 KiB

BIN
wellness_poly_regressions/normSleepHours_vs_normSleepQuality_3_degree.png View File

Before After
Width: 600  |  Height: 600  |  Size: 32 KiB

BIN
wellness_poly_regressions/normSleepHours_vs_normSleepQuality_4_degree.png View File

Before After
Width: 600  |  Height: 600  |  Size: 32 KiB

BIN
wellness_poly_regressions/normSleepQuality_vs_MenstruationNumber_2_degree.png View File

Before After
Width: 600  |  Height: 600  |  Size: 23 KiB

BIN
wellness_poly_regressions/normSleepQuality_vs_MenstruationNumber_3_degree.png View File

Before After
Width: 600  |  Height: 600  |  Size: 23 KiB

BIN
wellness_poly_regressions/normSleepQuality_vs_MenstruationNumber_4_degree.png View File

Before After
Width: 600  |  Height: 600  |  Size: 22 KiB

BIN
wellness_poly_regressions/normSoreness_vs_MenstruationNumber_2_degree.png View File

Before After
Width: 600  |  Height: 600  |  Size: 22 KiB

BIN
wellness_poly_regressions/normSoreness_vs_MenstruationNumber_3_degree.png View File

Before After
Width: 600  |  Height: 600  |  Size: 22 KiB

BIN
wellness_poly_regressions/normSoreness_vs_MenstruationNumber_4_degree.png View File

Before After
Width: 600  |  Height: 600  |  Size: 22 KiB

BIN
wellness_poly_regressions/normSoreness_vs_normDesire_2_degree.png View File

Before After
Width: 600  |  Height: 600  |  Size: 38 KiB

BIN
wellness_poly_regressions/normSoreness_vs_normDesire_3_degree.png View File

Before After
Width: 600  |  Height: 600  |  Size: 38 KiB

BIN
wellness_poly_regressions/normSoreness_vs_normDesire_4_degree.png View File

Before After
Width: 600  |  Height: 600  |  Size: 38 KiB

BIN
wellness_poly_regressions/normSoreness_vs_normFatigue_2_degree.png View File

Before After
Width: 600  |  Height: 600  |  Size: 39 KiB

BIN
wellness_poly_regressions/normSoreness_vs_normFatigue_3_degree.png View File

Before After
Width: 600  |  Height: 600  |  Size: 39 KiB

BIN
wellness_poly_regressions/normSoreness_vs_normFatigue_4_degree.png View File

Before After
Width: 600  |  Height: 600  |  Size: 39 KiB

BIN
wellness_poly_regressions/normSoreness_vs_normIrritability_2_degree.png View File

Before After
Width: 600  |  Height: 600  |  Size: 34 KiB

BIN
wellness_poly_regressions/normSoreness_vs_normIrritability_3_degree.png View File

Before After
Width: 600  |  Height: 600  |  Size: 34 KiB

BIN
wellness_poly_regressions/normSoreness_vs_normIrritability_4_degree.png View File

Before After
Width: 600  |  Height: 600  |  Size: 34 KiB

BIN
wellness_poly_regressions/normSoreness_vs_normSleepHours_2_degree.png View File

Before After
Width: 600  |  Height: 600  |  Size: 36 KiB

BIN
wellness_poly_regressions/normSoreness_vs_normSleepHours_3_degree.png View File

Before After
Width: 600  |  Height: 600  |  Size: 37 KiB

BIN
wellness_poly_regressions/normSoreness_vs_normSleepHours_4_degree.png View File

Before After
Width: 600  |  Height: 600  |  Size: 36 KiB

BIN
wellness_poly_regressions/normSoreness_vs_normSleepQuality_2_degree.png View File

Before After
Width: 600  |  Height: 600  |  Size: 39 KiB

BIN
wellness_poly_regressions/normSoreness_vs_normSleepQuality_3_degree.png View File

Before After
Width: 600  |  Height: 600  |  Size: 39 KiB

BIN
wellness_poly_regressions/normSoreness_vs_normSleepQuality_4_degree.png View File

Before After
Width: 600  |  Height: 600  |  Size: 39 KiB

+ 64
- 0
wellness_poly_regressions/wellness_poly_regression_desc.csv View File

@ -0,0 +1,64 @@
xVal, yVal, degree, r2, rmse
normSoreness, normFatigue, 2, 0.16854967429853518, 0.9033575013918365
normSoreness, normFatigue, 3, 0.17006015472626201, 0.9025365719486311
normSoreness, normFatigue, 4, 0.17055326322782471, 0.9022684111987103
normSoreness, normDesire, 2, 0.09702753580052226, 0.9408536578361171
normSoreness, normDesire, 3, 0.09735543680398395, 0.940682813827439
normSoreness, normDesire, 4, 0.10223585110043043, 0.9381363274157384
normSoreness, normIrritability, 2, 0.032418630567133566, 0.9819871762899308
normSoreness, normIrritability, 3, 0.03261787177694686, 0.9818860672812905
normSoreness, normIrritability, 4, 0.034543628328234544, 0.980908265725734
normSoreness, normSleepHours, 2, 0.0011338446969086924, 0.9780197919269892
normSoreness, normSleepHours, 3, 0.001843402686714568, 0.9776723554666978
normSoreness, normSleepHours, 4, 0.0020137564689429732, 0.9775889230219283
normSoreness, normSleepQuality, 2, 0.019594649756118798, 0.981995418492479
normSoreness, normSleepQuality, 3, 0.01986261536093159, 0.9818612092191729
normSoreness, normSleepQuality, 4, 0.020514330099920652, 0.9815347244646507
normSoreness, MenstruationNumber, 2, 0.00044841702343612067, 0.3486519499940022
normSoreness, MenstruationNumber, 3, 0.000554110484162873, 0.3486335161252519
normSoreness, MenstruationNumber, 4, 0.0005547900767390868, 0.3486333975951783
normFatigue, normDesire, 2, 0.17044223675854964, 0.9017956586323999
normFatigue, normDesire, 3, 0.17050241420665846, 0.9017629491888505
normFatigue, normDesire, 4, 0.1708742559722647, 0.9015608083271118
normFatigue, normIrritability, 2, 0.09218025965334886, 0.9511781793201747
normFatigue, normIrritability, 3, 0.09220971365139041, 0.9511627488188138
normFatigue, normIrritability, 4, 0.09233746191827452, 0.9510958205482378
normFatigue, normSleepHours, 2, 0.037395679724302355, 0.9601031570708193
normFatigue, normSleepHours, 3, 0.037684532627811795, 0.9599590950784357
normFatigue, normSleepHours, 4, 0.038112628469872734, 0.9597455475331765
normFatigue, normSleepQuality, 2, 0.1420596292108267, 0.9186184788560888
normFatigue, normSleepQuality, 3, 0.14230117332089598, 0.9184891560556917
normFatigue, normSleepQuality, 4, 0.14342854510375913, 0.9178853198307455
normFatigue, MenstruationNumber, 2, 0.00027452223877810766, 0.3486822766525199
normFatigue, MenstruationNumber, 3, 0.00027698344816373677, 0.3486818474443827
normFatigue, MenstruationNumber, 4, 0.0004451365239876992, 0.3486525221263516
normDesire, normIrritability, 2, 0.11666322360262527, 0.9382643679754818
normDesire, normIrritability, 3, 0.1260690807253083, 0.9332556331480653
normDesire, normIrritability, 4, 0.12620943541142648, 0.9331806889744677
normDesire, normSleepHours, 2, 0.00026365971406716593, 0.9784457112843362
normDesire, normSleepHours, 3, 0.000703037710309995, 0.9782306772075785
normDesire, normSleepHours, 4, 0.0016808528069790496, 0.9777519592356363
normDesire, normSleepQuality, 2, 0.03521627084735923, 0.974140524703551
normDesire, normSleepQuality, 3, 0.03910728572266642, 0.9721741644763685
normDesire, normSleepQuality, 4, 0.03919352657097985, 0.9721305368139393
normDesire, MenstruationNumber, 2, 0.00025365769743490585, 0.3486859151802862
normDesire, MenstruationNumber, 3, 0.001084296589686895, 0.34854103229587113
normDesire, MenstruationNumber, 4, 0.001167671735395226, 0.34852648639092143
normIrritability, normSleepHours, 2, 0.0054773031348056556, 0.9758910701062076
normIrritability, normSleepHours, 3, 0.005760770582335373, 0.9757519817442735
normIrritability, normSleepHours, 4, 0.00604160923489816, 0.9756141636933635
normIrritability, normSleepQuality, 2, 0.0571290005694004, 0.9630143625256148
normIrritability, normSleepQuality, 3, 0.06372152915693075, 0.9596417716991388
normIrritability, normSleepQuality, 4, 0.06372236804314457, 0.9596413417894175
normIrritability, MenstruationNumber, 2, 3.478074077056803e-05, 0.34872408242930736
normIrritability, MenstruationNumber, 3, 0.00021136235215735155, 0.3486932908687858
normIrritability, MenstruationNumber, 4, 0.00045263232822978505, 0.34865121482644773
normSleepHours, normSleepQuality, 2, 0.11537381813541336, 0.9327956662582828
normSleepHours, normSleepQuality, 3, 0.1264879229963617, 0.9269175012315237
normSleepHours, normSleepQuality, 4, 0.12825670781561405, 0.9259785626300854
normSleepHours, MenstruationNumber, 2, 0.00028226050221602517, 0.3486809271817931
normSleepHours, MenstruationNumber, 3, 0.0003063947730116423, 0.3486767183884638
normSleepHours, MenstruationNumber, 4, 0.00036532726929028314, 0.3486664408933668
normSleepQuality, MenstruationNumber, 2, 0.00028132986323747833, 0.3486810894755954
normSleepQuality, MenstruationNumber, 3, 0.00028142151526955317, 0.3486810734924333
normSleepQuality, MenstruationNumber, 4, 0.00032000171402246647, 0.34867434544156367

Loading…
Cancel
Save