|
@ -10,12 +10,6 @@ def vectorize_mult(column, dictionary, postfix, df, file=None): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
csv = pd.read_csv("data/rpe.csv") |
|
|
csv = pd.read_csv("data/rpe.csv") |
|
|
training = csv["Training"].unique() |
|
|
|
|
|
session = csv["SessionType"].unique() |
|
|
|
|
|
boms = csv["BestOutOfMyself"].unique() |
|
|
|
|
|
print(training) |
|
|
|
|
|
print(session) |
|
|
|
|
|
print(boms) |
|
|
|
|
|
vectorize_mult("Training", {"No": 0, "Yes": 1}, "", csv) |
|
|
vectorize_mult("Training", {"No": 0, "Yes": 1}, "", csv) |
|
|
|
|
|
|
|
|
mapping = {"Mobility/Recovery": 1, "Game": 0, "Skills": 0, "Conditioning": 0, |
|
|
mapping = {"Mobility/Recovery": 1, "Game": 0, "Skills": 0, "Conditioning": 0, |
|
@ -57,5 +51,5 @@ mapping[np.nan] = 1 |
|
|
vectorize_mult('BestOutOfMyself', mapping, "Unknown", csv) |
|
|
vectorize_mult('BestOutOfMyself', mapping, "Unknown", csv) |
|
|
mapping[np.nan] = 0 |
|
|
mapping[np.nan] = 0 |
|
|
|
|
|
|
|
|
print(csv.isnull().sum*()) |
|
|
|
|
|
csv.to_csv("cleaned/notnormalized_clean_rpe.csv") |
|
|
|
|
|
|
|
|
print(csv.isnull().sum()) |
|
|
|
|
|
csv.to_csv("cleaned/notnormalized_with_continuousNan_rpe.csv") |