Browse Source

finally dirty cleaneed rpe.csv

master
PerryXDeng 5 years ago
parent
commit
4b5f278868
2 changed files with 8913 additions and 43 deletions
  1. +8861
    -0
      data_preparation/cleaned/notnormalized_with_0Nan_rpe.csv
  2. +52
    -43
      data_preparation/rpe_processing.py

+ 8861
- 0
data_preparation/cleaned/notnormalized_with_0Nan_rpe.csv
File diff suppressed because it is too large
View File


+ 52
- 43
data_preparation/rpe_processing.py View File

@ -9,47 +9,56 @@ def vectorize_mult(column, dictionary, postfix, df, file=None):
df.to_csv('cleaned/{}.csv'.format(file))
csv = pd.read_csv("data/rpe.csv")
vectorize_mult("Training", {"No": 0, "Yes": 1}, "", csv)
csv = pd.read_csv("cleaned/notnormalized_with_continuousNan_rpe.csv")
# vectorize_mult("Training", {"No": 0, "Yes": 1}, "", csv)
#
# mapping = {"Mobility/Recovery": 1, "Game": 0, "Skills": 0, "Conditioning": 0,
# "Strength": 0, "Combat": 0, "Speed": 0, np.nan: 0}
# vectorize_mult("SessionType", mapping, "Mobility/Recovery", csv)
# mapping["Mobility/Recovery"] = 0
# mapping["Game"] = 1
# vectorize_mult("SessionType", mapping, "Game", csv)
# mapping["Game"] = 0
# mapping["Skills"] = 1
# vectorize_mult("SessionType", mapping, "Skills", csv)
# mapping["Skills"] = 0
# mapping["Conditioning"] = 1
# vectorize_mult("SessionType", mapping, "Conditioning", csv)
# mapping["Conditioning"] = 0
# mapping["Strength"] = 1
# vectorize_mult("SessionType", mapping, "Strength", csv)
# mapping["Strength"] = 0
# mapping["Combat"] = 1
# vectorize_mult("SessionType", mapping, "Combat", csv)
# mapping["Combat"] = 0
# mapping["Speed"] = 1
# vectorize_mult("SessionType", mapping, "Speed", csv)
# mapping["Speed"] = 0
# mapping[np.nan] = 1
# vectorize_mult("SessionType", mapping, "Unknown", csv)
# mapping[np.nan] = 0
#
# mapping = {"Not at all": 1, "Absolutely": 0, "Somewhat": 0, np.nan: 0}
# vectorize_mult("BestOutOfMyself", mapping, "NotAtAll", csv)
# mapping["Not at all"] = 0
# mapping["Absolutely"] = 1
# vectorize_mult("BestOutOfMyself", mapping, "Absolutely", csv)
# mapping["Absolutely"] = 0
# mapping["Somewhat"] = 1
# vectorize_mult('BestOutOfMyself', mapping, "Somewhat", csv)
# mapping["Somewhat"] = 0
# mapping[np.nan] = 1
# vectorize_mult('BestOutOfMyself', mapping, "Unknown", csv)
# mapping[np.nan] = 0
#
# csv.to_csv("cleaned/notnormalized_with_continuousNan_rpe.csv")
mapping = {"Mobility/Recovery": 1, "Game": 0, "Skills": 0, "Conditioning": 0,
"Strength": 0, "Combat": 0, "Speed": 0, np.nan: 0}
vectorize_mult("SessionType", mapping, "Mobility/Recovery", csv)
mapping["Mobility/Recovery"] = 0
mapping["Game"] = 1
vectorize_mult("SessionType", mapping, "Game", csv)
mapping["Game"] = 0
mapping["Skills"] = 1
vectorize_mult("SessionType", mapping, "Skills", csv)
mapping["Skills"] = 0
mapping["Conditioning"] = 1
vectorize_mult("SessionType", mapping, "Conditioning", csv)
mapping["Conditioning"] = 0
mapping["Strength"] = 1
vectorize_mult("SessionType", mapping, "Strength", csv)
mapping["Strength"] = 0
mapping["Combat"] = 1
vectorize_mult("SessionType", mapping, "Combat", csv)
mapping["Combat"] = 0
mapping["Speed"] = 1
vectorize_mult("SessionType", mapping, "Speed", csv)
mapping["Speed"] = 0
mapping[np.nan] = 1
vectorize_mult("SessionType", mapping, "Unknown", csv)
mapping[np.nan] = 0
mapping = {"Not at all": 1, "Absolutely": 0, "Somewhat": 0, np.nan: 0}
vectorize_mult("BestOutOfMyself", mapping, "NotAtAll", csv)
mapping["Not at all"] = 0
mapping["Absolutely"] = 1
vectorize_mult("BestOutOfMyself", mapping, "Absolutely", csv)
mapping["Absolutely"] = 0
mapping["Somewhat"] = 1
vectorize_mult('BestOutOfMyself', mapping, "Somewhat", csv)
mapping["Somewhat"] = 0
mapping[np.nan] = 1
vectorize_mult('BestOutOfMyself', mapping, "Unknown", csv)
mapping[np.nan] = 0
print(csv.isnull().sum())
csv.to_csv("cleaned/notnormalized_with_continuousNan_rpe.csv")
for i in range(len(csv.dtypes)):
type = csv.dtypes[i]
if type != "object":
colname = csv.columns[i]
if csv[colname].hasnans:
print(colname)
csv[colname] = csv[colname].fillna(0)
#print(csv.isnull().sum())
csv.to_csv("cleaned/notnormalized_with_0Nan_rpe.csv")

Loading…
Cancel
Save