|
|
@ -9,47 +9,56 @@ def vectorize_mult(column, dictionary, postfix, df, file=None): |
|
|
|
df.to_csv('cleaned/{}.csv'.format(file)) |
|
|
|
|
|
|
|
|
|
|
|
csv = pd.read_csv("data/rpe.csv") |
|
|
|
vectorize_mult("Training", {"No": 0, "Yes": 1}, "", csv) |
|
|
|
csv = pd.read_csv("cleaned/notnormalized_with_continuousNan_rpe.csv") |
|
|
|
# vectorize_mult("Training", {"No": 0, "Yes": 1}, "", csv) |
|
|
|
# |
|
|
|
# mapping = {"Mobility/Recovery": 1, "Game": 0, "Skills": 0, "Conditioning": 0, |
|
|
|
# "Strength": 0, "Combat": 0, "Speed": 0, np.nan: 0} |
|
|
|
# vectorize_mult("SessionType", mapping, "Mobility/Recovery", csv) |
|
|
|
# mapping["Mobility/Recovery"] = 0 |
|
|
|
# mapping["Game"] = 1 |
|
|
|
# vectorize_mult("SessionType", mapping, "Game", csv) |
|
|
|
# mapping["Game"] = 0 |
|
|
|
# mapping["Skills"] = 1 |
|
|
|
# vectorize_mult("SessionType", mapping, "Skills", csv) |
|
|
|
# mapping["Skills"] = 0 |
|
|
|
# mapping["Conditioning"] = 1 |
|
|
|
# vectorize_mult("SessionType", mapping, "Conditioning", csv) |
|
|
|
# mapping["Conditioning"] = 0 |
|
|
|
# mapping["Strength"] = 1 |
|
|
|
# vectorize_mult("SessionType", mapping, "Strength", csv) |
|
|
|
# mapping["Strength"] = 0 |
|
|
|
# mapping["Combat"] = 1 |
|
|
|
# vectorize_mult("SessionType", mapping, "Combat", csv) |
|
|
|
# mapping["Combat"] = 0 |
|
|
|
# mapping["Speed"] = 1 |
|
|
|
# vectorize_mult("SessionType", mapping, "Speed", csv) |
|
|
|
# mapping["Speed"] = 0 |
|
|
|
# mapping[np.nan] = 1 |
|
|
|
# vectorize_mult("SessionType", mapping, "Unknown", csv) |
|
|
|
# mapping[np.nan] = 0 |
|
|
|
# |
|
|
|
# mapping = {"Not at all": 1, "Absolutely": 0, "Somewhat": 0, np.nan: 0} |
|
|
|
# vectorize_mult("BestOutOfMyself", mapping, "NotAtAll", csv) |
|
|
|
# mapping["Not at all"] = 0 |
|
|
|
# mapping["Absolutely"] = 1 |
|
|
|
# vectorize_mult("BestOutOfMyself", mapping, "Absolutely", csv) |
|
|
|
# mapping["Absolutely"] = 0 |
|
|
|
# mapping["Somewhat"] = 1 |
|
|
|
# vectorize_mult('BestOutOfMyself', mapping, "Somewhat", csv) |
|
|
|
# mapping["Somewhat"] = 0 |
|
|
|
# mapping[np.nan] = 1 |
|
|
|
# vectorize_mult('BestOutOfMyself', mapping, "Unknown", csv) |
|
|
|
# mapping[np.nan] = 0 |
|
|
|
# |
|
|
|
# csv.to_csv("cleaned/notnormalized_with_continuousNan_rpe.csv") |
|
|
|
|
|
|
|
mapping = {"Mobility/Recovery": 1, "Game": 0, "Skills": 0, "Conditioning": 0, |
|
|
|
"Strength": 0, "Combat": 0, "Speed": 0, np.nan: 0} |
|
|
|
vectorize_mult("SessionType", mapping, "Mobility/Recovery", csv) |
|
|
|
mapping["Mobility/Recovery"] = 0 |
|
|
|
mapping["Game"] = 1 |
|
|
|
vectorize_mult("SessionType", mapping, "Game", csv) |
|
|
|
mapping["Game"] = 0 |
|
|
|
mapping["Skills"] = 1 |
|
|
|
vectorize_mult("SessionType", mapping, "Skills", csv) |
|
|
|
mapping["Skills"] = 0 |
|
|
|
mapping["Conditioning"] = 1 |
|
|
|
vectorize_mult("SessionType", mapping, "Conditioning", csv) |
|
|
|
mapping["Conditioning"] = 0 |
|
|
|
mapping["Strength"] = 1 |
|
|
|
vectorize_mult("SessionType", mapping, "Strength", csv) |
|
|
|
mapping["Strength"] = 0 |
|
|
|
mapping["Combat"] = 1 |
|
|
|
vectorize_mult("SessionType", mapping, "Combat", csv) |
|
|
|
mapping["Combat"] = 0 |
|
|
|
mapping["Speed"] = 1 |
|
|
|
vectorize_mult("SessionType", mapping, "Speed", csv) |
|
|
|
mapping["Speed"] = 0 |
|
|
|
mapping[np.nan] = 1 |
|
|
|
vectorize_mult("SessionType", mapping, "Unknown", csv) |
|
|
|
mapping[np.nan] = 0 |
|
|
|
|
|
|
|
mapping = {"Not at all": 1, "Absolutely": 0, "Somewhat": 0, np.nan: 0} |
|
|
|
vectorize_mult("BestOutOfMyself", mapping, "NotAtAll", csv) |
|
|
|
mapping["Not at all"] = 0 |
|
|
|
mapping["Absolutely"] = 1 |
|
|
|
vectorize_mult("BestOutOfMyself", mapping, "Absolutely", csv) |
|
|
|
mapping["Absolutely"] = 0 |
|
|
|
mapping["Somewhat"] = 1 |
|
|
|
vectorize_mult('BestOutOfMyself', mapping, "Somewhat", csv) |
|
|
|
mapping["Somewhat"] = 0 |
|
|
|
mapping[np.nan] = 1 |
|
|
|
vectorize_mult('BestOutOfMyself', mapping, "Unknown", csv) |
|
|
|
mapping[np.nan] = 0 |
|
|
|
|
|
|
|
print(csv.isnull().sum()) |
|
|
|
csv.to_csv("cleaned/notnormalized_with_continuousNan_rpe.csv") |
|
|
|
for i in range(len(csv.dtypes)): |
|
|
|
type = csv.dtypes[i] |
|
|
|
if type != "object": |
|
|
|
colname = csv.columns[i] |
|
|
|
if csv[colname].hasnans: |
|
|
|
print(colname) |
|
|
|
csv[colname] = csv[colname].fillna(0) |
|
|
|
#print(csv.isnull().sum()) |
|
|
|
csv.to_csv("cleaned/notnormalized_with_0Nan_rpe.csv") |