|
|
@ -17,7 +17,11 @@ def k_days_into_future_regression(X, y, k, n0): |
|
|
|
out = [] |
|
|
|
for day in y[col][n0 - 1:]: |
|
|
|
prev = day - k |
|
|
|
xprev = X[X[col] == prev].drop(columns=[col]).to_numpy()[0, :] |
|
|
|
xprev = X[X[col] == prev].drop(columns=[col]).to_numpy() |
|
|
|
if xprev.shape[0] != 1: |
|
|
|
continue |
|
|
|
else: |
|
|
|
xprev = xprev[0, :] |
|
|
|
yt = y[y[col] == day].drop(columns=[col]).to_numpy()[0, :] |
|
|
|
inp.append(xprev) |
|
|
|
out.append(yt) |
|
|
@ -31,8 +35,8 @@ def k_days_into_future_regression(X, y, k, n0): |
|
|
|
|
|
|
|
def main(): |
|
|
|
fatigueSums = pd.read_csv("fatigue_total_sum.csv") |
|
|
|
workMovingAverage21 = pd.read_csv("21DaySlidingWorkAverage.csv", index_col=0) |
|
|
|
print(k_days_into_future_regression(workMovingAverage21, fatigueSums, 0, 21)) |
|
|
|
performance = pd.read_csv("../data_preparation/cleaned/expSmoothWorkAndFatigueData.csv", index_col=0).drop(columns=["totalWork", "averageWorkLoad", "smoothedFatigueData"]) |
|
|
|
print(k_days_into_future_regression(fatigueSums, performance, 0, 1)) |
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
|