diff --git a/data_preparation/cleaned/slidingWorkAverage.csv b/data_preparation/cleaned/slidingWorkAverage.csv new file mode 100644 index 0000000..21a6be5 --- /dev/null +++ b/data_preparation/cleaned/slidingWorkAverage.csv @@ -0,0 +1,336 @@ +"","TimeSinceAugFirst","slidingWorkAverage" +"1",20,5563.95 +"2",21,5895.66666666667 +"3",22,6307.42857142857 +"4",23,6331.71428571429 +"5",24,6458.52380952381 +"6",25,6752.33333333333 +"7",26,6767.33333333333 +"8",27,6766.61904761905 +"9",28,6738.42857142857 +"10",29,6798.66666666667 +"11",30,6811.38095238095 +"12",31,6813.7619047619 +"13",32,6881.85714285714 +"14",33,6840.42857142857 +"15",34,6834.71428571429 +"16",35,6788.47619047619 +"17",36,6711.09523809524 +"18",37,6720.61904761905 +"19",38,6781.33333333333 +"20",39,6495.04761904762 +"21",40,6617.90476190476 +"22",41,6578.85714285714 +"23",42,6122.66666666667 +"24",43,5613.04761904762 +"25",44,5671 +"26",45,5383.2380952381 +"27",46,4878.52380952381 +"28",47,4872.90476190476 +"29",48,4874.33333333333 +"30",49,4910.85714285714 +"31",50,4796.80952380952 +"32",51,4867.42857142857 +"33",52,5067.90476190476 +"34",53,5234.04761904762 +"35",54,5216.19047619048 +"36",55,5235.47619047619 +"37",56,5313.09523809524 +"38",57,5416.90476190476 +"39",58,5454.90476190476 +"40",59,5578.47619047619 +"41",60,5850.80952380952 +"42",61,5744.38095238095 +"43",62,5768.66666666667 +"44",63,6210.71428571429 +"45",64,6592.95238095238 +"46",65,6613.90476190476 +"47",66,6986.7619047619 +"48",67,7557.09523809524 +"49",68,7567.71428571429 +"50",69,7583.42857142857 +"51",70,7640.33333333333 +"52",71,7712.38095238095 +"53",72,7741.19047619048 +"54",73,7612.85714285714 +"55",74,7466 +"56",75,7487.42857142857 +"57",76,7480.28571428571 +"58",77,7064.61904761905 +"59",78,6618.42857142857 +"60",79,6647.38095238095 +"61",80,6575.95238095238 +"62",81,5935.85714285714 +"63",82,6326.33333333333 +"64",83,7005.38095238095 +"65",84,6509.52380952381 +"66",85,6314.66666666667 +"67",86,6331 +"68",87,5901.95238095238 +"69",88,5370.85714285714 +"70",89,5633.80952380952 +"71",90,5935.52380952381 +"72",91,5317.66666666667 +"73",92,4865.38095238095 +"74",93,4682.7619047619 +"75",94,4640.61904761905 +"76",95,4585.61904761905 +"77",96,4604.66666666667 +"78",97,4592.52380952381 +"79",98,5018.95238095238 +"80",99,5509.19047619048 +"81",100,5545.38095238095 +"82",101,5570.52380952381 +"83",102,6642.42857142857 +"84",103,6281.95238095238 +"85",104,5579.19047619048 +"86",105,6177.7619047619 +"87",106,6478.2380952381 +"88",107,6441.33333333333 +"89",108,7018.95238095238 +"90",109,7771.09523809524 +"91",110,7487.42857142857 +"92",111,7168.57142857143 +"93",112,7570.95238095238 +"94",113,7856.38095238095 +"95",114,7973.7619047619 +"96",115,7617.33333333333 +"97",116,7176.85714285714 +"98",117,7260.66666666667 +"99",118,7479.2380952381 +"100",119,7162.33333333333 +"101",120,6722.57142857143 +"102",121,6734.71428571429 +"103",122,6630 +"104",123,6050.57142857143 +"105",124,6004.14285714286 +"106",125,6003.57142857143 +"107",126,5477.38095238095 +"108",127,4982.38095238095 +"109",128,4995.71428571429 +"110",129,4822.14285714286 +"111",130,4590 +"112",131,4634.28571428571 +"113",132,4634.28571428571 +"114",133,4787.61904761905 +"115",134,4950.19047619048 +"116",135,5018.52380952381 +"117",136,5628.90476190476 +"118",137,6380.04761904762 +"119",138,6255.7619047619 +"120",139,6037.19047619048 +"121",140,6435.90476190476 +"122",141,6408.04761904762 +"123",142,6788.90476190476 +"124",143,6869.19047619048 +"125",144,6356.95238095238 +"126",145,6463.14285714286 +"127",146,6653.61904761905 +"128",147,6511.71428571429 +"129",148,6512.95238095238 +"130",149,6397.71428571429 +"131",150,6617.2380952381 +"132",151,6094.85714285714 +"133",152,6766.28571428571 +"134",153,6873.19047619048 +"135",154,6273.19047619048 +"136",155,6500.61904761905 +"137",156,6401.80952380952 +"138",157,6452.2380952381 +"139",158,6449.42857142857 +"140",159,6518 +"141",160,6518 +"142",161,6399.7619047619 +"143",162,6653.19047619048 +"144",163,6260.19047619048 +"145",164,6179.2380952381 +"146",165,6804.2380952381 +"147",166,6751.14285714286 +"148",167,6560.66666666667 +"149",168,6990.90476190476 +"150",169,6975.14285714286 +"151",170,6970.14285714286 +"152",171,6734.80952380952 +"153",172,6583.04761904762 +"154",173,6174.2380952381 +"155",174,6067.33333333333 +"156",175,6419.2380952381 +"157",176,6005.47619047619 +"158",177,5965.57142857143 +"159",178,5539.04761904762 +"160",179,5201.80952380952 +"161",180,5306 +"162",181,5357.33333333333 +"163",182,4840.19047619048 +"164",183,4516.04761904762 +"165",184,4437.38095238095 +"166",185,4148.19047619048 +"167",186,3595.90476190476 +"168",187,3589 +"169",188,3614.71428571429 +"170",189,3615.90476190476 +"171",190,4194.09523809524 +"172",191,4347.19047619048 +"173",192,4576.33333333333 +"174",193,5244.28571428571 +"175",194,4937.38095238095 +"176",195,4937.38095238095 +"177",196,5191.42857142857 +"178",197,5533.57142857143 +"179",198,5683.71428571429 +"180",199,5955.38095238095 +"181",200,6318.57142857143 +"182",201,6214.85714285714 +"183",202,6167.80952380952 +"184",203,6524.47619047619 +"185",204,6826.14285714286 +"186",205,6846.95238095238 +"187",206,6975.66666666667 +"188",207,7325.80952380952 +"189",208,7488.04761904762 +"190",209,7584.71428571429 +"191",210,7458.04761904762 +"192",211,6931.52380952381 +"193",212,6847.33333333333 +"194",213,6665.90476190476 +"195",214,6637.09523809524 +"196",215,6637.09523809524 +"197",216,6637.09523809524 +"198",217,6707.80952380952 +"199",218,6657.04761904762 +"200",219,6630.80952380952 +"201",220,6465.09523809524 +"202",221,5746.7619047619 +"203",222,5677.71428571429 +"204",223,5673.42857142857 +"205",224,6052.2380952381 +"206",225,6061.28571428571 +"207",226,6100.90476190476 +"208",227,6407.80952380952 +"209",228,6582.80952380952 +"210",229,6400.09523809524 +"211",230,6277.71428571429 +"212",231,5974.61904761905 +"213",232,6039.85714285714 +"214",233,6138.61904761905 +"215",234,5793.95238095238 +"216",235,5185.61904761905 +"217",236,5185.61904761905 +"218",237,5185.61904761905 +"219",238,5011.33333333333 +"220",239,4762.33333333333 +"221",240,4749.28571428571 +"222",241,4999.7619047619 +"223",242,5391.90476190476 +"224",243,5391.90476190476 +"225",244,5391.90476190476 +"226",245,5236.42857142857 +"227",246,5204.09523809524 +"228",247,5067.57142857143 +"229",248,4865.90476190476 +"230",249,4221.85714285714 +"231",250,4196.14285714286 +"232",251,4287.33333333333 +"233",252,4549.61904761905 +"234",253,4529.61904761905 +"235",254,4321.95238095238 +"236",255,4376.2380952381 +"237",256,4534.95238095238 +"238",257,4642.28571428571 +"239",258,4867.95238095238 +"240",259,4410.66666666667 +"241",260,4181.7619047619 +"242",261,4132 +"243",262,3547.95238095238 +"244",263,3165.57142857143 +"245",264,3537.19047619048 +"246",265,3752.71428571429 +"247",266,3212 +"248",267,3017.04761904762 +"249",268,3013.47619047619 +"250",269,2987.04761904762 +"251",270,3462.28571428571 +"252",271,3469.42857142857 +"253",272,3391.09523809524 +"254",273,3847.14285714286 +"255",274,4045.71428571429 +"256",275,4249.85714285714 +"257",276,4280.47619047619 +"258",277,4291.42857142857 +"259",278,4184.09523809524 +"260",279,3958.42857142857 +"261",280,4075.47619047619 +"262",281,4352.66666666667 +"263",282,4394.80952380952 +"264",283,4441.95238095238 +"265",284,4476.2380952381 +"266",285,4435.66666666667 +"267",286,4468.14285714286 +"268",287,4414.09523809524 +"269",288,4349 +"270",289,4450.19047619048 +"271",290,4178.04761904762 +"272",291,3862.09523809524 +"273",292,3881.38095238095 +"274",293,3871.38095238095 +"275",294,3611.19047619048 +"276",295,3662.61904761905 +"277",296,3575.85714285714 +"278",297,3918.2380952381 +"279",298,4170.2380952381 +"280",299,4170.2380952381 +"281",300,4170.2380952381 +"282",301,4577.85714285714 +"283",302,4423.38095238095 +"284",303,4388.38095238095 +"285",304,4756.47619047619 +"286",305,4869.19047619048 +"287",306,4538.14285714286 +"288",307,4290.14285714286 +"289",308,4433.2380952381 +"290",309,4762.28571428571 +"291",310,4642.71428571429 +"292",311,4739.61904761905 +"293",312,4890.19047619048 +"294",313,4977.90476190476 +"295",314,5076.2380952381 +"296",315,4817.2380952381 +"297",316,4391.52380952381 +"298",317,4344.14285714286 +"299",318,4162.71428571429 +"300",319,4213.19047619048 +"301",320,4247.85714285714 +"302",321,4270.42857142857 +"303",322,4225.42857142857 +"304",323,4455.19047619048 +"305",324,4327.80952380952 +"306",325,4272.80952380952 +"307",326,4688.19047619048 +"308",327,4688.19047619048 +"309",328,4688.19047619048 +"310",329,5210.80952380952 +"311",330,5324.14285714286 +"312",331,5318.71428571429 +"313",332,5487.85714285714 +"314",333,5625.85714285714 +"315",334,5602.42857142857 +"316",335,5535.52380952381 +"317",336,5745.47619047619 +"318",337,6030.2380952381 +"319",338,5963.57142857143 +"320",339,5825 +"321",340,5540.95238095238 +"322",341,5506.28571428571 +"323",342,5496.09523809524 +"324",343,5394.66666666667 +"325",344,5061.95238095238 +"326",345,5061.2380952381 +"327",346,4868.61904761905 +"328",347,4190.04761904762 +"329",348,4192.90476190476 +"330",349,4192.90476190476 +"331",350,3631.2380952381 +"332",351,3369.09523809524 +"333",352,3366.2380952381 +"334",353,3131.38095238095 +"335",354,2723.52380952381 diff --git a/data_preparation/createWorkSequenceData.R b/data_preparation/createWorkSequenceData.R new file mode 100644 index 0000000..859e120 --- /dev/null +++ b/data_preparation/createWorkSequenceData.R @@ -0,0 +1,50 @@ +source("readData.R") + +library(tidyverse) + + +RPEData <-readNArpeData() + + +numDays <- max(RPEData$TimeSinceAugFirst) + + +dayList <- 0:numDays +workLoad <- c() +averageWorkLoad <- c() + + +for(day in dayList) +{ + total <- 0 + + daylyActivities <- subset(RPEData, TimeSinceAugFirst == day) + cat("day: ", day, "\n",sep="") + cat("Activity count:", length(daylyActivities$DailyLoad), "\n", sep="") + + averageWorkLoad <- c(averageWorkLoad, mean(daylyActivities$SessionLoad, na.rm = T)) + workLoad <- c(workLoad, sum(daylyActivities$SessionLoad, na.rm = T)) +} +plot(dayList, averageWorkLoad, main="Average Work Load") +plot(dayList, workLoad, main="Daily Total Work Load") + + +slidingAverage <- c() + +window <- 21 - 1 +for(day in window:numDays) +{ + print(length(workLoad[c((day-window):day)])) + windowAverage <- mean(workLoad[c((day-window):day)]) + + slidingAverage <- c(slidingAverage, windowAverage) +} + +plot(window:numDays, slidingAverage, main="Sliding Average") +plot(density(slidingAverage), main="Sliding Average Density") +plot(density(workLoad), main="Total Work Load Average") + + +dataTibble <- tibble(TimeSinceAugFirst = window:numDays, slidingWorkAverage = slidingAverage) + +write.csv(dataTibble, "cleaned/slidingWorkAverage.csv") \ No newline at end of file diff --git a/data_preparation/dataPrep.R b/data_preparation/dataPrep.R index 4c7c694..dc0205a 100644 --- a/data_preparation/dataPrep.R +++ b/data_preparation/dataPrep.R @@ -7,7 +7,7 @@ library(tidyverse) library(DBI) library(RSQLite) -gpsData <- read.csv("data/gps.csv") +gpsData <- read.csv("data/gps.csv")c gpsDataTibble <- as_tibble(gpsData) diff --git a/data_preparation/normalizeData.R b/data_preparation/normalizeData.R index b07ebee..7d44f4f 100644 --- a/data_preparation/normalizeData.R +++ b/data_preparation/normalizeData.R @@ -83,11 +83,11 @@ for(id in playerIds) } -normalWellnessData <- tibble(date = normDate, playerID = normPlayerIDs, normSoreness = normSoreness, +normalWellnessData <- tibble(TimeSinceAugFirst = normDate, playerID = normPlayerIDs, normSoreness = normSoreness, normFatigue = normFatigue, normDesire = normDesire, normIrritability = normIrritability, normSleepHours = normSleepHours, normSleepQuality = normSleepQuality) -write.csv(normalWellnessData, "cleaned/normalizedWellness.csv") +write.csv(normalWellnessData, "cleaned/time_series_normalized_wellness.csv") plot() diff --git a/data_preparation/readData.R b/data_preparation/readData.R index 3e6bed8..f26b375 100644 --- a/data_preparation/readData.R +++ b/data_preparation/readData.R @@ -13,5 +13,11 @@ readWellnessData <- function() readRPEData <- function() { - as_tibble(read.csv("./cleaned/notnormalized_with_0Nan_rpe.csv")) + as_tibble(read.csv("./cleaned/time_series_notnormalized_with_continuousNan_rpe.csv")) +} + + +readNArpeData <- function() +{ + as_tibble(read.csv("./cleaned/time_series_notnormalized_with_continuousNan_rpe.csv")) } diff --git a/data_preparation/replaceNanWithMedian.R b/data_preparation/replaceNanWithMedian.R index 083203a..00a0d87 100644 --- a/data_preparation/replaceNanWithMedian.R +++ b/data_preparation/replaceNanWithMedian.R @@ -12,6 +12,10 @@ trainingData <- readRPEData() trainingData$Duration[is.na(trainingData$Duration)] <- median(trainingData$Duration, na.rm=TRUE) +print(trainingData$Duration) + + + #RPE trainingData$RPE[is.na(trainingData$RPE)] <- median(trainingData$RPE, na.rm=TRUE) @@ -32,14 +36,21 @@ trainingData$ObjectiveRating[is.na(trainingData$ObjectiveRating)] <- median(trai trainingData$FocusRating[is.na(trainingData$FocusRating)] <- median(trainingData$FocusRating, na.rm=TRUE) -trainingData$RPE[is.na(trainingData$RPE)] <- median(trainingData$RPE, na.rm=TRUE) -write.csv(as.data.frame(trainingData), "cleaned/time_series_rpw_naReplacedWithMedian.csv") +# session load +trainingData$SessionLoad[is.na(trainingData$SessionLoad)] <- median(trainingData$SessionLoad, na.rm=TRUE) +# daily load +trainingData$DailyLoad[is.na(trainingData$DailyLoad)] <- median(trainingData$DailyLoad, na.rm=TRUE) -head(as.data.frame(trainingData), 100) + +trainingData$RPE[is.na(trainingData$RPE)] <- median(trainingData$RPE, na.rm=TRUE) + +write.csv(as.data.frame(trainingData), "cleaned/time_series_rpe_NA_ReplacedWithMedian.csv") +head(as.data.frame(trainingData), 100) + trainingData