|
@ -48,9 +48,14 @@ def standard_lr(x, y): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def poly_regression(x, y, degree): |
|
|
def poly_regression(x, y, degree): |
|
|
|
|
|
|
|
|
|
|
|
# Reshapes the models to be able to run regression on them |
|
|
|
|
|
x = x.reshape(-1, 1) |
|
|
|
|
|
y = y.reshape(-1, 1) |
|
|
|
|
|
|
|
|
# Polynomial regression with nth degree, gives back rmse and r2 |
|
|
# Polynomial regression with nth degree, gives back rmse and r2 |
|
|
polynomial_features = PolynomialFeatures(degree=degree) |
|
|
polynomial_features = PolynomialFeatures(degree=degree) |
|
|
x_poly = polynomial_features.fist_transform(x) |
|
|
|
|
|
|
|
|
x_poly = polynomial_features.fit_transform(x) |
|
|
|
|
|
|
|
|
model = linear_model.LinearRegression() |
|
|
model = linear_model.LinearRegression() |
|
|
model.fit(x_poly, y) |
|
|
model.fit(x_poly, y) |
|
@ -61,42 +66,25 @@ def poly_regression(x, y, degree): |
|
|
return rmse, r2 |
|
|
return rmse, r2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def run_all_linears(): |
|
|
|
|
|
|
|
|
|
|
|
# Reads in the neccessary csv file |
|
|
|
|
|
df = pd.read_csv('data_preparation/cleaned/time_series_normalized_wellness_menstruation.csv') |
|
|
|
|
|
regr = linear_model.LinearRegression() |
|
|
|
|
|
for i in range(4, 11): |
|
|
|
|
|
for j in range(1, 11 - i): |
|
|
|
|
|
mat = df[[df.columns[i], df.columns[i + j]]].values |
|
|
|
|
|
regr.intercept_, regr.coef_, r2, mse = standard_lr(mat[:, 0], mat[:, 1]) |
|
|
|
|
|
plt.figure(figsize=(6, 6)) |
|
|
|
|
|
plt.xlabel(df.columns[i]) |
|
|
|
|
|
plt.ylabel(df.columns[i + j]) |
|
|
|
|
|
plt.title('r2: ' + str(r2)) |
|
|
|
|
|
plt.scatter(mat[:, 0], mat[:, 1]) |
|
|
|
|
|
plt.savefig('wellness_linear_regressions/' + df.columns[i] + '_vs_' + df.columns[i + j] + '.png') |
|
|
|
|
|
plt.close() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def run_all_polynomials(): |
|
|
def run_all_polynomials(): |
|
|
# Reads in the neccessary csv file |
|
|
# Reads in the neccessary csv file |
|
|
df = pd.read_csv('data_preparation/cleaned/time_series_normalized_wellness_menstruation.csv') |
|
|
|
|
|
|
|
|
df = pd.read_csv('data_preparation/cleaned/personal.csv') |
|
|
regr = linear_model.LinearRegression() |
|
|
regr = linear_model.LinearRegression() |
|
|
for i in range(4, 11): |
|
|
|
|
|
for j in range(1, 11 - i): |
|
|
|
|
|
|
|
|
print("xVal, yVal, degree, r2, rmse") |
|
|
|
|
|
for i in range(3, 14): |
|
|
|
|
|
for j in range(1, 14 - i): |
|
|
mat = df[[df.columns[i], df.columns[i + j]]].values |
|
|
mat = df[[df.columns[i], df.columns[i + j]]].values |
|
|
for d in range(2, 5): |
|
|
|
|
|
|
|
|
for d in range(1, 6): |
|
|
rmse, r2 = poly_regression(mat[:, 0], mat[:, 1], d) |
|
|
rmse, r2 = poly_regression(mat[:, 0], mat[:, 1], d) |
|
|
plt.figure(figsize=(6, 6)) |
|
|
plt.figure(figsize=(6, 6)) |
|
|
plt.xlabel(df.columns[i]) |
|
|
plt.xlabel(df.columns[i]) |
|
|
plt.ylabel(df.columns[i + j]) |
|
|
plt.ylabel(df.columns[i + j]) |
|
|
plt.title('r2: ' + str(r2) + 'degree: ' + str(d)) |
|
|
plt.title('r2: ' + str(r2) + 'degree: ' + str(d)) |
|
|
plt.scatter(mat[:, 0], mat[:, 1]) |
|
|
plt.scatter(mat[:, 0], mat[:, 1]) |
|
|
plt.savefig('wellness_poly_regressions/' + df.columns[i] + '_vs_' + df.columns[i + j] + '_' + str(d) + '_degree.png') |
|
|
|
|
|
print(df.columns[i] + '_vs_' + df.columns[i + j] + '_degree_' + str(d) + '_r2=' + str(r2) + '_rmse=' + str(rmse)) |
|
|
|
|
|
|
|
|
plt.savefig('personal_regression_info/' + df.columns[i] + '_vs_' + df.columns[i + j] + '_' + str(d) + '_degree.png') |
|
|
|
|
|
print(df.columns[i] + ', ' + df.columns[i + j] + ', ' + str(d) + ', ' + str(r2) + ', ' + str(rmse)) |
|
|
plt.close() |
|
|
plt.close() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
run_all_linears() |
|
|
|
|
|
|
|
|
# run_all_linears() |
|
|
run_all_polynomials() |
|
|
run_all_polynomials() |