|
|
- source("readData.R")
-
- library(tidyverse)
-
-
- # file to replace NA values with the median for thet column
-
-
- trainingData <- readRPEData()
-
- #duration
- trainingData$Duration[is.na(trainingData$Duration)] <- median(trainingData$Duration, na.rm=TRUE)
-
-
- print(trainingData$Duration)
-
-
-
- #RPE
- trainingData$RPE[is.na(trainingData$RPE)] <- median(trainingData$RPE, na.rm=TRUE)
-
- # acute load
- trainingData$AcuteLoad[is.na(trainingData$AcuteLoad)] <- median(trainingData$AcuteLoad, na.rm=TRUE)
-
- # chronic load
- trainingData$ChronicLoad[is.na(trainingData$ChronicLoad)] <- median(trainingData$ChronicLoad, na.rm=TRUE)
-
- # ratio
- trainingData$AcuteChronicRatio[is.na(trainingData$AcuteChronicRatio)] <- median(trainingData$AcuteChronicRatio, na.rm=TRUE)
-
- # objective rating
- trainingData$ObjectiveRating[is.na(trainingData$ObjectiveRating)] <- median(trainingData$ObjectiveRating, na.rm=TRUE)
-
-
- # focus rating
- trainingData$FocusRating[is.na(trainingData$FocusRating)] <- median(trainingData$FocusRating, na.rm=TRUE)
-
-
-
- # session load
- trainingData$SessionLoad[is.na(trainingData$SessionLoad)] <- median(trainingData$SessionLoad, na.rm=TRUE)
-
- # daily load
- trainingData$DailyLoad[is.na(trainingData$DailyLoad)] <- median(trainingData$DailyLoad, na.rm=TRUE)
-
-
- trainingData$RPE[is.na(trainingData$RPE)] <- median(trainingData$RPE, na.rm=TRUE)
-
- write.csv(as.data.frame(trainingData), "cleaned/time_series_rpe_NA_ReplacedWithMedian.csv")
-
-
-
- head(as.data.frame(trainingData), 100)
-
-
- trainingData
|