|
|
- import pandas as pd
-
-
- def vectorize_mult(df, column, dictionary):
- """
- Changes all the categorical values into its respective
- number in the dictionary and then saves it in the DF
- :param df: dataframe
- :param column: column name
- :param dictionary: alterations to make
- """
- newCol = column + "Num"
- df[newCol] = df[column].map(dictionary)
-
-
- class WellnessCSV:
- def __init__(self):
- self.file = "data/wellness.csv"
- self.end = "cleaned/notnormalized_with_0NaN_wellness.csv"
-
- def vectorize(self):
- df = pd.read_csv(self.file)
-
- # Vectorizing appropriate data
- vectorize_mult(df, "Pain", {"No": 0, "Yes": 1})
- vectorize_mult(df, "Illness", {"No": 0, "Slightly Off": 0.5, "Yes": 1})
- vectorize_mult(df, "Menstruation", {"No": 0, "Yes": 1})
- vectorize_mult(df, "Nutrition", {"Poor": 0, "Okay": 0.5, "Excellent": 1})
- vectorize_mult(df, "NutritionAdjustment", {"No": 0, "Yes": 1})
- vectorize_mult(df, "USGMeasurement", {"No": 0, "Yes": 1})
-
- readiness = []
- for i, value in df["TrainingReadiness"].iteritems():
- value = value.split("%")[0]
- value = int(value) * (1/100)
- readiness.append(value)
-
- df["TrainingReadinessNum"] = readiness
-
- # Filling in NaNs for appropriate layers where they won't make a statistical difference
- df["MenstruationNum"] = df["MenstruationNum"].fillna(0)
- df["USGMeasurementNum"] = df["USGMeasurementNum"].fillna(0)
- df["NutritionNum"] = df["MenstruationNum"].fillna(0)
- df["NutritionAdjustmentNum"] = df["NutritionAdjustmentNum"].fillna(0)
-
- # Saving the df to the "cleaned" CSV
- df.to_csv(self.end)
-
-
- cls = WellnessCSV()
- cls.vectorize()
|