|
|
- # Look at data
-
-
-
- library(tidyverse)
-
- library(DBI)
- library(RSQLite)
-
- gpsData <- read.csv("data/gps.csv")c
-
-
- gpsDataTibble <- as_tibble(gpsData)
-
-
-
- #workingTibble <- head(gpsDataTibble, 500000)
-
- workingTibble <- gpsDataTibble
-
-
- playerIds <-unique(workingTibble$PlayerID)
- cat("Number of Players: ", length(playerIds), sep="")
-
- gameIds <- unique(workingTibble$GameID)
- cat("Number of Games: ", length(gameIds), sep="")
-
-
- playerIDMetrics <- c()
- gameIDMetrics <- c()
- averageSpeed <- c()
-
- accelDistance <- c()
-
-
- for(playerID in playerIds)
- {
- for(gameID in gameIds)
- {
- cat(playerID, gameID , '\n', sep=" ")
- speedTibble <- subset(workingTibble, GameID == gameID & PlayerID == playerID)
-
-
- # crunch average speed
- averageSpeed <- c(averageSpeed, mean(speedTibble$Speed, na.rm = 0))
-
- # average for accel value
-
- accelDistance <- c(accelDistance, mean(sqrt(speedTibble$AccelX^2 + speedTibble$AccelY^2 + speedTibble$AccelZ^ 2), na.rm = 0))
-
-
- # game and player id to vector
- playerIDMetrics <- c(playerIDMetrics, playerID)
- gameIDMetrics <- c(gameIDMetrics, gameID)
- }
- }
-
-
- plot(accelDistance, averageSpeed)
-
- compressedMetrics <- tibble(gameID = gameIDMetrics, playerID = playerIDMetrics, averageSpeed = averageSpeed, accelerationVector = accelDistance)
-
-
- length(compressedMetrics$averageSpeed)
- length(compressedMetrics$accelerationVector)
-
- write.csv(compressedMetrics, "data/speedData.csv")
-
- #putSQLiteHere <- "gpsData.sqlite" # could also be ":memory:"
- #mySQLiteDB <- dbConnect(RSQLite::SQLite(),putSQLiteHere)
-
-
- #dbWriteTable(mySQLiteDB, "gpsData", compressedMetrics, overwrite=TRUE)
-
- #dbDisconnect(mySQLiteDB)
-
-
-
-
- wellnessData <- read.csv("./data/wellness_na.csv")
- wellnessDataTibble <- as_tibble(wellnessData)
-
-
-
-
- #plot(wellnesPlayer1$Fatigue * wellnesPlayer1$Soreness * wellnesPlayer1$Irritability, wellnesPlayer1$SleepHours * wellnesPlayer1$SleepQuality)
-
-
- wellnessCleaned <- as_tibble(read.csv("./cleaned/dirty_wellness.csv"))
- wellnesPlayer1 <- subset(wellnessCleaned, PlayerID == 1)
-
-
- ggplot(data = wellnessCleaned) +
- theme(plot.title = element_text(hjust = 0.5)) +
- ggtitle("Hours of Sleep Box Plot") +
- geom_boxplot(na.rm = T, mapping = aes(y=SleepHours, group = PlayerID), outlier.colour = "red", outlier.shape = 1) +
- labs(group = "Player ID", y = "Hours of Sleep") +
- coord_flip() +
- theme_bw()
-
-
- ggplot(data = wellnessCleaned) +
- theme(plot.title = element_text(hjust = 0.5)) +
- ggtitle("Fatigue Box Plot") +
- geom_boxplot(na.rm = T, mapping = aes(y=Fatigue, group = PlayerID), outlier.colour = "red", outlier.shape = 1) +
- labs(group = "Player ID", y = "Fatigue Score") +
- coord_flip() +
- theme_bw()
-
-
- ggplot(data = wellnessCleaned) +
- theme(plot.title = element_text(hjust = 0.5)) +
- ggtitle("Sleep Quality Box Plot") +
- geom_boxplot(na.rm = T, mapping = aes(y=SleepQuality, group = PlayerID), outlier.colour = "red", outlier.shape = 1) +
- labs(group = "Player ID", y = "Sleep Quality") +
- coord_flip() +
- theme_bw()
-
-
- ggplot(data = wellnessCleaned) +
- theme(plot.title = element_text(hjust = 0.5)) +
- ggtitle("Training Readiness Box Plot") +
- geom_boxplot(na.rm = T, mapping = aes(y=TrainingReadinessNum, group = PlayerID), outlier.colour = "red", outlier.shape = 1) +
- labs(group = "Player ID", y = "Training Readiness") +
- coord_flip() +
- theme_bw()
-
-
- plot(density(wellnesPlayer1$SleepHours))
-
- max(wellnessCleaned$SleepHours, na.rm = T)
- min(wellnessCleaned$SleepHours, na.rm = T)
-
-
- playerIdsWellness <-unique(wellnessCleaned$PlayerID)
- cat("Number of Players: ", length(playerIdsWellness), sep="")
-
-
-
-
- rpeData <- read.csv("./data/rpe.csv")
- rpeDataTibble <- as_tibble(rpeData)
-
-
- gameData <- read.csv("data/games.csv")
- gameDataTibble <- as_tibble(gameData)
-
-
-
- par(mfrow = c(4, 5))
-
- playerIdsWellness <- sort(playerIdsWellness)
-
- for(playerID in playerIdsWellness)
- {
- if(!is.na(playerID) && playerID < 88)
- {
- #print(playerID)
- #welnessTibble <- c()
-
-
- welnessTibble <- subset(wellnessCleaned,PlayerID == playerID)
- #print(length(welnessTibble$SleepHours))
-
- plot(density(welnessTibble$SleepHours, kernel = "gaussian", bw=0.5), main = paste("Player ", playerID, sep=""), xlab="Hours of Sleep")
-
- #lines(density(welnessTibble$SleepHours))
- }
- }
-
-
- plot(density(wellnesPlayer1$SleepHours, kernel = "gaussian", bw=0.4), ylim=c(0,.7), xlab = "Hours of Sleep", main="Team's Sleep Distribution")
- for(playerID in playerIdsWellness)
- {
- if(!is.na(playerID) && playerID < 88)
- {
- #print(playerID)
- #welnessTibble <- c()
-
- welnessTibble <- subset(wellnessCleaned,PlayerID == playerID)
-
- lines(density(welnessTibble$SleepHours,kernel = "gaussian", bw=0.4))
- }
- }
-
-
-
- plot(density(wellnesPlayer1$Fatigue, kernel = "gaussian", bw=0.4), ylim=c(0,.7), xlab = "Self Reported Fatigue", main="Team's Fatigue Distribution")
- for(playerID in playerIdsWellness)
- {
- if(!is.na(playerID) && playerID < 88)
- {
- #print(playerID)
- #welnessTibble <- c()
-
- welnessTibble <- subset(wellnessCleaned,PlayerID == playerID)
-
- lines(density(welnessTibble$Fatigue,kernel = "gaussian", bw=0.4))
- }
- }
-
-
-
-
-
-
- head(gpsData)
-
-
-
-
-
-
-
-
-
- # Normalize Wellness data
-
|